<ruby id="bv9jr"></ruby>

<ruby id="bv9jr"><em id="bv9jr"><ins id="bv9jr"></ins></em></ruby>

<i id="bv9jr"></i>

    <form id="bv9jr"><b id="bv9jr"></b></form>

      <p id="bv9jr"></p>

            <dl id="bv9jr"></dl>

            DDR5 SDRAM

            Micron DDR5 Technology Enablement Program

            The DDR5 Technical Enablement Program (TEP) is a program that offers a path into Micron to gain early access to technical information and support, electrical and thermal models as well as DDR5 products to aid in the design, development and bring-up of next-generation computing platforms.

            Learn more

            Featured Resources

            The Next Leap in Data Center Performance Arrives With Micron DDR5

            DDR5, the most technologically advanced DRAM to date, will enable the next generation of server workloads by delivering more than an 85% increase in memory performance.

            Micron DDR5: Key Module Features

            DDR5 was designed to increase bandwidth delivered to systems. Learn about key aspects of the Micron DDR5 dual in-line memory module (DIMM) and advantages over DDR4.

            DDR5: The next step in system level performance: Part I

            As CPU core counts continue to increase, bandwidth per core cannot continue to scale with DDR4. New memory architectures are required to meet next-generation bandwidth per core requirements in x86 CPUs. Enter DDR5.

            DDR5: The Next Step in System Level Performance: Part II

            In this follow-up blog, I discuss, in a little more detail, some of the features on DDR5 that allow performance gains and scaling capability.

            Ecosystem Partners

            Collaborating with strategic partners is what we do. Our relationships with preferred partners and key enablers are our top priority. Through those relationships, we're building ecosystems that promote connections and co-development efforts that lead to better solutions for our customers.

            Learn more

            Advantages of Migrating to DDR5

            DDR5 is the next evolution in DRAM, bringing a robust list of new features geared to increase reliability, availability, and serviceability (RAS); reduce power; and dramatically improve performance. Some of the key feature differences between DDR4 and DDR5 are as follows:

            Feature/Option DDR4 DDR5 DDR5 Advantage
             Data rates  1600-3200 MT/s  3200-6400 MT/s  Increases performance and bandwidth
             VDD/VDDQ/VPP   1.2/1.2/2.5   1.1/1.1/1.8   Lowers power
             Internal VREF  VREFDQ  VREFDQ, VREFCA, VREFCS   Improves voltage margins, reduces BOM costs
             Device densities    2Gb-16Gb    8Gb-64Gb    Enables larger monolithic devices 
             Prefetch    8n   16n    Keeps the internal core clock low
             DQ receiver equalization   CTLE  DFE  Improves opening of the received DQ data
             eyes inside the DRAM
             Duty cycle adjustment (DCA)   None   DQS and DQ  Improves signaling on the transmitted DQ/DQS pins
             Internal DQS delay
             None   DQS interval oscillator   Increases robustness against environmental changes 
             On-die ECC  None  128b+8b SEC, error check and scrub   Strengthens on-chip RAS
             CRC   Write   Read/Write    Strengthens system RAS by protecting read data 
             Bank groups (BG)/banks   4 BG x 4 banks (x4/x8)
             2 BG x 4 banks (x16)
             8 BG x 2 banks (8Gb x4/x8)
             4 BG x 2 banks (8Gb x16)
             8 BG x 4 banks (16-64Gb x4/x8)
             4 BG x 4 banks (16-64Gb x16) 
             Improves bandwidth/performance
             Command/address interface   ODT, CKE, ACT, RAS,
             CAS, WE, A<X:0>

             Dramatically reduces the CA pin count

             ODT  DQ, DQS, DM/DBI   DQ, DQS, DM, CA bus    Improves signal integrity, reduces  BOM costs 
             Burst length  BL8 (and BL4)   BL16, BL32
             (and BC8 OTF, BL32 OTF) 
             Allows 64B cache line fetch with only 1 DIMM subchannel. 
             MIR (“mirror” pin)   None  Yes  Improves DIMM signaling
             Bus inversion   Data bus inversion (DBI)  Command/address inversion (CAI)   Reduces VDDQ noise on modules
             CA training, CS training   None   CA training, CS training   Improves timing margin on CA and CS pins  
             Write leveling training modes   Yes  Improved  Compensates for unmatched DQ-DQS path
             Read training patterns   Possible with the MPR  Dedicated MRs for serial
             (userdefined), clock and LFSR
             -generated training patterns
             Makes read timing margin more robust
             Mode registers  7 x 17 bits  Up to 256 x 8 bits
             (LPDDR type read/write) 
             Provides room to expand
             PRECHARGE commands   All bank and per bank  All bank, per bank, and same bank   PREsb enables precharging-specific bank in each BG
             REFRESH commands   All bank   All bank and same bank  REFsb enables refreshing of specific bank in each BG
             Loopback mode  None   Yes  Enables testing of the DQ and DQS signaling